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Abstract

Surface Green function for incompressible, elastically isotropic half-space coupled with surface stress is derived by
using double Fourier transform technique. The result indicates that the surface displacement induced by a force tan-
gential to the surface is the same as the usual solution for elastic half-spaces where the effect of surface stress is ignored.
However, the displacement caused by a force normal to the surface involves an additional parameter, i.e. the ratio of
specific surface stress to shear modulus. The parameter has the dimension of length, and may provide a means to intro-
duce an intrinsic length scale for some related problems regarding the surface of an elastic half-space. This is extremely
true for soft elastic media with very low shear modulus, because in that situation the magnitude of the parameter is
relatively large. As an illustrative example, the proposed Green function is adopted to analyze the interaction between
two molecules with circular section adsorbed on the surface of a soft elastic half-space. It is shown that surface stress
remarkably affects the pair interaction potential when the distance between the molecules is not larger than several times
of the intrinsic length scale.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Green function; Elastic half-space; Surface stress
1. Introduction

Materials like polymer gels are very soft and their mechanical elastic behavior under small deforma-
tions can be well characterized by Hooke�s law. Since the elastic moduli of such soft solids are much
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lower than their metallic counterparts (Radmacher et al., 1995, 1996), discernible deformation patterns
can be created on their surface by very small forces. The importance of the topographical patterns was
recently highlighted (Assender et al., 2002), the applications can be found in various fields, such as
manipulating polymer nanostructures (Peters et al., 2000), directing microfluidic flows (Zhao et al.,
2001) and regulating surface self-assembly (Srinivasan et al., 2001). In order to create desired surface
profile, deformation of the soft solids should be well understood a prior. Motivated by this reason,
the present paper studies the surface deformation of a soft elastic half-space. In particular, surface Green
function for the half-space will be derived. Though the Green function for conventional elastic half-space
has been well established, the present study further generalizes the model to incorporate the influence of
surface stress.

The surface of a solid has different atomistic structure from the bulk and is treated as a specific
mathematical surface which has no thickness. The free energy per unit area of the surface is called specific
surface energy, and its change per unit amount of strain is referred as surface stress; both have the dimen-
sion of force over length. An excellent explanation of the concept of surface stress has been given by
Cammarata (1994). To deform a solid, excessive work is needed to stretch the surface in addition to
straining the bulk. The larger the partition of work done to surface, the more important the effect of sur-
face stress. Nozieres et al. (2001) suggested that the ratio of specific surface stress to the bulk Young�s
modulus can be used to roughly reflect the relative importance of surface stress. Obviously, this ratio
has the dimension of length, and defines an intrinsic length scale for the material. For usual metallic
materials, the ratio is normally less than one Angstrom. The effect of surface stress on the deformation
is negligible in many circumstances, especially when the characteristic size of the metals is very large. For
soft solids, however, the situation is rather different. The surface stress of a soft solid is a little less than
that of a metal, but the elastic modulus can be nearly 7–8 orders smaller than that of conventional solids.
Therefore, the corresponding intrinsic length scale of soft solids is much larger, implying that surface
stress may play crucial role in affecting the deformation of soft solids. Indeed, a number of unusual phe-
nomena regarding soft solids have been observed experimentally or predicted theoretically. For instance,
Pieranski et al. (2000) found that the faceting of their soft crystals composed of non-ionic surfactant mol-
ecules is remarkable: up to 60 different facets are present on the equilibrium shape. Nozieres et al. (2001)
referred this phenomenon to the influence of surface stress. From theoretical analysis, they also showed
that, due to surface stress, a surface step penetrates inside the soft crystal as edge dislocation rather than
bound to the surface. In fact, even for usual metallic materials, the effect of surface stress sometimes is
significant as well. Recent theoretical studies revel that the presence of surface effect causes the elastic
responses of tiny structural elements such as rods (Miller and Shenoy, 2000; Shenoy, 2002) and films
(He et al., 2004; Lim and He, 2004) to be significantly size-dependent, when their characteristic size re-
duces to tens of nanometers.

The present paper is organized as follows. In the next section, the basic equations and boundary condi-
tions for an incompressible, elastically isotropic half-space coupled with surface stress are listed. The sur-
face Green function tensor for the half-space is then derived in Section 3. All components of the Green
function are determined explicitly by using the double Fourier transform technique. The result shows that
the elastic response of the half-space to a concentrated force tangential to the surface is the same as that
predicted by the conventional elasticity theory. Building on this foundation, the surface displacement de-
rived in Section 4 is devoted to illustrate the application of the obtained Green function in calculating
the interaction between two adsorbed molecules on the surface. As a primary effort, the possible influence
of thermal fluctuation on the energy is not considered. Numerical results indicate that the presence of sur-
face stress leads to remarkable decrease in interaction energy when the distance between the molecules is
not greater than a few times of the intrinsic length scale. Thus, it is concluded that there is a need to include
the effect of surface stress in analyzing similar problems related to surface deformation of soft solids. The
work presented in this paper is briefly summarized in Section 5.



134 L.H. He, C.W. Lim / International Journal of Solids and Structures 43 (2006) 132–143
2. Fundamental equations

The physical system being considered is an elastic half-space subject to external forces on the surface. A
Cartesian coordinate system (x1,x2,x3) is introduced, so that the x1�x2 plane coincides with the unde-
formed surface and the half-space is represented by x3 6 0 (Fig. 1). The displacement, stress and strain com-
ponents are denoted, in sequence, by ui, rij and eij. The relations between the strain and displacement
components are given by eij ¼ 1

2
ðui;j þ uj;iÞ. Throughout this paper, the usual summation convention is

adopted for repeated indices, where Latin indices run from 1 to 3 while Greek ones take the value of 1
or 2. A comma denotes differentiation with respect to the suffix coordinates.

The main concern of the present paper is to incorporate the influence of surface stress. Despite the exten-
sive discussion surface stress has received over the years, there remains a great deal of confusion concerning
its meaning and importance (Cammarata, 1994). A rigorous derivation of the model for elastically isotropic
solids with surface stress is due to Gurtin and Murdoch (1975). The model is very general in the sense that it
allows for different elastic property of the surface from the bulk. This paper will not involve such a general
case and assumes that the surface of the half-space has the same elastic property as its interior. Then the
surface stress components of the flat surface read (Gurtin and Murdoch, 1975, 1978)
sab ¼ s½ð1þ um;mÞdab � ub;a�;
s3b ¼ su3;b;

ð1Þ
in which dab is the usual Kronecker delta, and s is the residual surface stress (i.e., the surface stress in the
case that the surface is not deformed).

It is presumed that the soft half-space is elastic and incompressible, i.e. uk,k = 0. The stress within it
obeys the equilibrium equation
rij;j ¼ 0; ð2Þ

and assuming elastic incompressibility, the constitutive law is written as
rij ¼ �pdij þ 2leij; ð3Þ

where p = �rkk/3 is the hydrostatic pressure, l is shear modulus. On the surface of the half-space, x3 = 0,
force balance requires ri3 = sia,a + qi. This last condition can also be expressed, by the substitution of Eq.
(1), as follows
ra3 ¼ qa; r33 ¼ su3;aa þ q3. ð4Þ
Fig. 1. A soft elastic half-space subject to external force on the surface.
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Eqs. (2)–(4) along with the incompressibility condition uk,k = 0 completely describe the deformation of
the half-space. It is clear that the presence of the surface stress gives rise to the non-classical boundary con-
ditions in Eq. (4) which are coupled with the displacement field within the bulk material. The same form of
boundary conditions have also been used by several authors in the study on some problems relevant to sur-
face effects (e.g. Shenoy and Sharma, 2002; Koguchi, 2003; Kumar, 2003; Yang, 2004).
3. Derivation of Green function

Surface Green function Gijðx1 � x01; x2 � x02; 0Þ of the half-space is defined as the xi-component of dis-
placement at (x1,x2,0) on the surface that is induced by a unit force applied at ðx01; x02; 0Þ along xj direction.
The objective of this section is to derive the Green function by using double Fourier transform technique.
For convenience, the special case that the unit force is applied at the origin (i.e. x01 ¼ 0 and x02 ¼ 0) will be
considered. Through the obtained solution Gij(x1,x2,0), the Green function for the general case that
ðx01; x02; 0Þ does not coincide with the origin can be generated simply by replacing x1 and x2, respectively,
by x1 � x01 and x2 � x02. To this end, three sets of unit external forces on the surface of the half-space are
taken into account:
q1 ¼ dðx1Þdðx2Þ; q2 ¼ q3 ¼ 0; ð5Þ

q2 ¼ dðx1Þdðx2Þ; q1 ¼ q3 ¼ 0; ð6Þ

q3 ¼ dðx1Þdðx2Þ; q1 ¼ q2 ¼ 0; ð7Þ
where d(x) stands for Dirac�s source function. The solutions to the boundary value problems corresponding
to the conditions (5)–(7) determine Gi1(x1,x2,0), Gi2(x1,x2,0) and Gi3(x1,x2,0), respectively.

By substituting Eq. (3) into Eq. (2) and making use of the strain–displacement relations and the incom-
pressibility condition, it is obtained that
lr2ui � p;i ¼ 0; uk;k ¼ 0. ð8Þ
The solution to these equations can be represented by the double Fourier integrals of the form
ui ¼
1

4p2

Z 1

�1

Z 1

�1
Uiðn1; n2; x3Þe�inaxadn1dn2;

p ¼ 1

4p2

Z 1

�1

Z 1

�1
P ðn1; n2; x3Þe�inaxadn1dn2;

ð9Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
, and Ui and P are double Fourier transforms of ui and p, respectively, defined by
Ui ¼
Z 1

�1

Z 1

�1
uiðx1; x2; x3Þeinaxadx1dx2;

P ¼
Z 1

�1

Z 1

�1
pðx1; x2; x3Þeinaxadx1dx2.

ð10Þ
Inserting Eq. (9) into Eq. (8) gives
lðU a;33 � n2U aÞ þ inaP ¼ 0;

lðU 3;33 � n2U 3Þ � P ;3 ¼ 0;

U 3;3 � inaU a ¼ 0;

ð11Þ
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with n2 ¼ n21 þ n22. The general solution of the above ordinary differential equations can be obtained readily,
and the result is
U 1 ¼ in1 x3 �
1

2n

� �
C1 þ 1� 1� 2nx3

2n2
n21

� �
C2 �

1� 2nx3
2n2

n1n2C3

� �
enx3 ;

U 2 ¼ in2 x3 �
1

2n

� �
C1 �

1� 2nx3
2n2

n1n2C2 þ 1� 1� 2nx3
2n2

n22

� �
C3

� �
enx3 ;

U 3 ¼
3

2
� nx3

� �
C1 þ in1 x3 �

1

2n

� �
C2 þ in2 x3 �

1

2n

� �
C3

� �
enx3 ;

P ¼ �2lðnC1 � in1C2 � in2C3Þ;

ð12Þ
where C1, C2 and C3 are yet unknown functions of n1 and n2. For each set of external forces given in Eqs.
(5)–(7), the functions can be determined by using the boundary conditions on the surface. To do so, one can
substitute one of Eqs. (5)–(7) into (4), invoke Eqs. (3), (9) and (12), and then take the inverse double Fourier
transform with respect to the resulting equations. This leads to a linear system composed of three algebraic
equations related to C1, C2 and C3. Solving it immediately provides the expression of the displacement field
of the half-space. The results are given in the following.

For the external force on the surface given in Eq. (5), the unknowns C1, C2 and C3 are be obtained
as
C1 ¼
in1
4ln2

; C2 ¼
3n2 þ n22
4ln3

; C3 ¼ � n1n2
4ln3

. ð13Þ
Inserting the result into (12) and then into (9) yields
u1 ¼
1

8p2l

Z 1

�1

Z 1

�1

n2 þ n22 þ nn21x3
n3

enx3�inaxadn1dn2;

u2 ¼ � 1

8p2l

Z 1

�1

Z 1

�1

ð1� nx3Þn1n2
n3

enx3�inaxadn1dn2;

u3 ¼
i

8p2l

Z 1

�1

Z 1

�1

n1x3
n

enx3�inaxadn1dn2.

ð14Þ
These displacement components do not involve any contribution from the surface stress s. On the surface
x3 = 0, the above integrals can be estimated explicitly, and the displacement components are derived as
u1 ¼
1

4pl
1

r
þ x21

r3

� �
; u2 ¼

1

4pl
x1x2
r3

; u3 ¼ 0 ð15Þ
in which r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. Hence one gets the following components of surface Green function tensor:
G11ðx1; x2; 0Þ ¼
1

4pl
1

r
þ x21

r3

� �
; G21ðx1; x2; 0Þ ¼

1

4pl
x1x2
r3

; G31ðx1; x2; 0Þ ¼ 0. ð16Þ
For the set of external forces given in Eq. (6), the solution of the unknowns is as follows
C1 ¼
in2
4ln2

; C2 ¼ � n1n2
4ln3

; C3 ¼
3n2 þ n21
4ln3

; ð17Þ
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and the corresponding displacement field is expressed by
u1 ¼ � 1

8p2l

Z 1

�1

Z 1

�1

ð1� nx3Þn1n2
n3

enx3�inaxadn1dn2;

u2 ¼
1

8p2l

Z 1

�1

Z 1

�1

n2 þ n21 þ nn22x3
n3

enx3�inaxadn1dn2;

u3 ¼
i

8p2l

Z 1

�1

Z 1

�1

n2x3
n

enx3�inaxadn1dn2.

ð18Þ
In particular, the displacement components of a point on the surface of the half-space can be written in the
explicit form as
u1 ¼
1

4pl
x1x2
r3

; u2 ¼
1

4pl
1

r
þ x22

r3

� �
; u3 ¼ 0; ð19Þ
which further provide that
G12ðx1; x2; 0Þ ¼
1

4pl
x1x2
r3

; G22ðx1; x2; 0Þ ¼
1

4pl
1

r
þ x22

r3

� �
; G32ðx1; x2; 0Þ ¼ 0. ð20Þ
As expected, the results are independent of the surface stress.
For the external force specified by Eq. (7), it can be arrived at
C1 ¼
1

2lð2þ gnÞn ; C2 ¼
in1

2lð2þ gnÞn ; C3 ¼
in2

2lð2þ gnÞn ð21Þ
in which g = s/l is a constant having the dimension of length. Accordingly, the displacement field of the
half-space is
u1 ¼
i

8p2l

Z 1

�1

Z 1

�1

n1x3
ð2þ gnÞn e

nx3�inaxadn1dn2;

u2 ¼
i

8p2l

Z 1

�1

Z 1

�1

n2x3
ð2þ gnÞn e

nx3�inaxadn1dn2;

u3 ¼
1

8p2l

Z 1

�1

Z 1

�1

1� nx3
ð2þ gnÞn e

nx3�inaxadn1dn2.

ð22Þ
It can be seen that on the surface x3 = 0 the above expressions become
u1 ¼ 0; u2 ¼ 0; u3 ¼
1

4p2l

Z 1

�1

Z 1

�1

e�inaxa

ð2þ gnÞ dn1dn2. ð23Þ
The integral in the last equation can be estimated by letting x1 ¼ r cos h, x2 ¼ r sin h, n1 ¼ n cosw,
n2 ¼ r sinw and recalling the integral representation of Bessel function of the first kind with order zero
(Jerri, 1992):
J 0ðnrÞ ¼
1

2p

Z 2p

0

e�inr cosðh�wÞdh. ð24Þ
In this situation u3 can be represented in term of a J0-Hankel transform
R1
0

J 0ðnrÞ=ð2þ gnÞdn and is finally
obtained as (Erdelyi et al., 1954)
u3 ¼
1

4plg
4r
g 1

F 2 1;
3

2
;
3

2
;� r2

g2

� �
� pY 0

2r
g

� �� �
; ð25Þ
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where pFq(a1, . . . ap;b1, . . . bq;x) is the generalized hypergeometric function (see Andrews, 1985), and Y0(x)
is the Bessel function of the second kind with order zero. Accordingly, one has the results
Fig. 2.
is bala
G13ðx1; x2; 0Þ ¼ 0; G23ðx1; x2; 0Þ ¼ 0;

G33ðx1; x2; 0Þ ¼
1

4plg
4r
g 1

F 2 1;
3

2
;
3

2
;� r2

g2

� �
� pY 0

2r
g

� �� �
.

ð26Þ
Eqs. (16), (20) and (26) provide all the components of the surface Green function tensor for the half-
space. Clearly, the Green function tensor is symmetric in the sense Gij(x1,x2,0) = Gji(x1,x2,0). Only
G33(x1,x2,0) involves the parameter g having the dimension of length, meaning that the normal displace-
ment due to a concentrated force normal to the surface is influenced by surface stress. The other compo-
nents of the surface Green function tensor are the same as those for a usual incompressible, elastically
isotropic half-space where the effect of surface stress is ignored. In the limiting case of g = 0, from Eq.
(23) it is seen that G33(x1,x2,0) also becomes the well-known result for a half-space without surface effect,
i.e. G33(x1,x2,0) = 1/4plr (Ling et al., 2002).
4. Application: interaction of two adsorbed molecules

For the application of the derived surface Green function, interaction between two adsorbed large mol-
ecules mediated by the underlying soft elastic half-space is analyzed as an illustrative example. Since the
main objective of this paper is to show the effect of surface stress, the possible influence of thermal fluctu-
ations will not be included for simplicity. As pointed out by Schiller and Mogel (2001), a molecule adsorbed
on the surface of a soft elastic body may sink into the half-space (Fig. 2a) or mould around the interface
(Fig. 2b), depending on the nature of adsorption. The molecule exerts a distribution of normal force on the
surface. In the latter case, the resultant force on the molecule vanishes, while in the former case the molecule
sustains a net force towards the elastic body. Schiller and Mogel (2001) have studied the interaction be-
tween colloidal molecules adsorbed on soft elastic film resting on a rigid substrate, but the effect of surface
stress was not incorporated.
a

b

Adsorption of a molecule on the surface of a soft solid: (a) the molecule is unbalanced and sinks into the solid; (b) the molecule
nced and surface of the solid moulds around it.
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In order to account for the influence of surface stress, the net variation in energy caused by adsorption of
molecules is considered. Assume that the adsorbed molecules exert distributed normal force q3 on the sur-
face region S0 where they are in contact with the half-space. Then, following Gurtin and Murdoch (1975),
the total free energy of the system reads
U ¼
Z
V

1

2
rijui;jdV þ

Z
S

1

2
ðsia � sdiaÞui;adS þ

Z
S
sua;adS �

Z
S0

q3u3dS ð27Þ
in which the first integral is the strain energy, the second and third integrals stand for the work done by the
residual surface stress, and the last one is the potential energy of the external force. Upon the use of Gauss
theorem and Eqs. (1) and (4), it can be proved that the variation in energy resulted from adsorption can be
written as
U ¼ � 1

2

Z
S0

q3u3dS. ð28Þ
If there are two molecules adsorbed on the surface, they exert two distributed forces qð1Þ3 and qð2Þ3 on the
surface regions S1 and S2, respectively. The total displacement field of the half-space is the superposition
of the displacement induced by the first molecule alone, uð1Þi , and that by the second molecule alone, uð2Þi .
It is easy to know that the interaction energy between the two molecules, i.e. the total energy variation
caused by the two adsorbed molecules minus the respective energy variation caused by each molecule alone,
can be expressed in the form
U 12 ¼ � 1

2

Z
S1

qð1Þ3 uð2Þ3 dS � 1

2

Z
S2

qð2Þ3 uð1Þ3 dS. ð29Þ
Since uðjÞ3 ðyjÞ ¼
R
Sj
gðy1 � y2Þq

ðjÞ
3 ðyjÞdSj (j = 1,2), one can see that the two terms in the above equation are

equal, and the interaction energy can be written alternatively as
U 12 ¼ �
Z
S1

Z
S2

qð1Þ3 ðy1Þgðy1 � y2Þq
ð2Þ
3 ðy2ÞdS1dS2. ð30Þ
Here g(y1�y2) = G33(y1�y2), y1 and y2 are arbitrary points belonging to S1 and S2, respectively.
For simplicity, it is assumed that the molecules have a circular cross section in the direction perpendic-

ular to the surface. The contact regions S1 and S2 then are circular, with the centers x1 and x2 as well as
radii b1 and b2, respectively, as shown in Fig. 3. In this situation the distributed force exerted by each mol-
ecule is axisymmetric about the center of contact region, and the interaction energy can be represented as
follows
U 12 ¼ �
Z b1

0

Z b2

0

Z 2p

0

Z 2p

0

qð1Þ3 ðq1Þq
ð2Þ
3 ðq2Þgðrþ lÞq1q2dh1dh2dq1dq2; ð31Þ
where r = x2�x1, q1 = y1�x1, q2 = y2�x2, l = q2�q1, q1 = jq1j, q2 = jq2j, h1 is the angle between q1 and r,
and h2 the angle between q2 and r. For the case when the distance between the centers of the two molecules
Fig. 3. Sketch for the contact regions of two circularly symmetric molecules adsorbed on the surface.



140 L.H. He, C.W. Lim / International Journal of Solids and Structures 43 (2006) 132–143
is significantly large than the radii of the contact regions, it is reasonable to expand the Green function in
Taylor�s series
gðrþ lÞ ¼ gðrÞ þ g;aðrÞla þ
1

2!
g;abðrÞlalb þ

1

3!
g;abmðrÞlalblm þ � � � . ð32Þ
With the help of the equalities
Z 2p

0

Z 2p

0

g;aðrÞladh1dh2 ¼ 0;

Z 2p

0

Z 2p

0

g;abðrÞlalbdh1dh2 ¼ 2p2ðq2
1 þ q2

2Þr2
s gðrÞ;

Z 2p

0

Z 2p

0

g;abmðrÞlalblmdh1dh2 ¼ 0;

Z 2p

0

Z 2p

0

g;abmkðrÞlalblmlkdh1dh2 ¼
3

2
p2ðq4

1 þ q4
2 þ 4q2

1q
2
1Þr2

sr2
s gðrÞ;

ð33Þ
where r = jrj and r2
s ¼ d2=dr2 þ d=rdr, one gets
Z 2p

0

Z 2p

0

gðrþ lÞdh1dh2 ¼ ð2pÞ2 gðrÞ þ 1

4
ðq2

1 þ q2
2Þr2

s gðrÞ þ
1

64
ðq4

1 þ q4
2 þ 4q2

1q
2
1Þr2

sr2
s gðrÞ þ � � �

� �
.

ð34Þ

Hence, the interaction energy is obtained as
U 12 ¼ �P ð1Þ
0 P ð2Þ

0 gðrÞ � 1

4
ðP ð1Þ

2 P ð2Þ
0 þ P ð1Þ

0 P ð2Þ
2 Þr2

s gðrÞ �
1

64
ðP ð1Þ

4 P ð2Þ
0 þ P ð1Þ

0 P ð2Þ
4 þ 4P ð1Þ

2 P ð2Þ
2 Þr2

sr2
s gðrÞ

� � � � ð35Þ
in which P ðjÞ
n (j = 1,2) are the n-th order moments of the normal force defined by
P ðjÞ
n ¼ 2p

Z bj

0

qnþ1
j qðjÞ3 ðqjÞdqj. ð36Þ
These moments may be obtained by properly designed experiments or atomistic calculations. In particular,
P ðjÞ
0 are also named as adsorption forces which equal zero when the molecules are balanced (Fig. 2a) and do

not vanish when the molecules are unbalanced (Fig. 2b). If the two molecules are the same, then qð1Þ3 ¼ qð2Þ3 ,
b1 = b2 and P ð1Þ

n ¼ P ð2Þ
n ¼ Pn, and the interaction energy becomes
U 12 ¼ �P 2
0gðrÞ �

1

2
P 0P 2r2

s gðrÞ �
1

32
ðP 0P 4 þ 4P 2

2Þr2
sr2

s gðrÞ � � � � . ð37Þ
In order to examine the influence of surface stress on the interaction energy, consider now two identical
molecules bound to a soft surface. The surface stress and shear modulus of the half-space are taken as
s � 0.1 N/m and l = 1 MPa, respectively. Then the parameter of length dimension, g, is of the order of
0.1 lm. When the molecules are unbalanced (P050), the first term in Eq. (37) dominates, i.e.
U 12 ¼ �P 2

0gðrÞ, because the higher-order derivatives of the Green function decay rapidly with increasing
spacing between the molecules and thus can be neglected. When the molecules are balanced (P0 = 0), the
dominating part of the interaction energy becomes U 12 ¼ � 1

8
P 2
2r2

sr2
s gðrÞ due to the same reason. In both

cases the corresponding interaction energy in absence of surface energy, U 0
12, can be calculated by the sub-

stitution of g(r) = 1/4plr. Depicted in Figs. 4 and 5 are variations in the relative interaction energy,
U 12=U 0

12, with the dimensionless distance between the molecules, r/g, for unbalanced (P050) and balanced
(P0 = 0) adsorptions, respectively. Since U 12=U 0

12 only depend on the ratio of r/g, the shape of the curves
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Fig. 4. Variation in the relative interaction energy between two unbalanced adsorbed molecules (P0 5 0) with distance.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Balanced adsorption

U
12

 /U
12

0

r/η

Fig. 5. Variation in the relative interaction energy between two balanced adsorbed molecules (P0 = 0) with distance.
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are independent of any material constants of the elastic half-space. For either P050 or P0 = 0, the relative
interaction energy approaches unity with the increase of molecule spacing, implying that surface energy has
negligible influence on the interaction energy when the two molecules are largely apart. However, when the
distance between the adsorbed molecules are small, say two times of g, the presence of surface energy results
in remarkable reduction of the interaction energy. The phenomenon can be explained as follows. In fact,
the molecules interact with each other through the underlying soft solid, and the indirect interaction force
depends on the deformation-induced surface profile around the adsorbed molecules. In the example con-
sidered here, the surface stress tends to flatten the surface so as to reduce the surface area and thus the en-
ergy. Therefore, the surface becomes more rigid and weakens the indirect interaction between the adsorbed
molecules.
5. Conclusions

Incorporating the effect of surface stress, surface Green function for an incompressible, elastically isotro-
pic half-space has been derived by using the double Fourier transform technique. It is seen that the displace-
ment components of the surface caused by a tangential unit force are the same as the usual ones which are
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obtained in absence of surface stress. In contrast, the displacement component caused by a normal unit
force is very different. It is expressed in term of the generalized hypergeometric function, and involves a
parameter having the dimension of length defined by the ratio of the surface stress to shear modulus of
the half-space. When the elastic half-space is relatively soft, the magnitude of the parameter is quite large.
Consequently, the parameter provides an intrinsic length scale in describing surface deformations of soft
solids. As an illustrative example, the pair interaction potential between two colloidal molecules adsorbed
on the surface of a soft solid is calculated. The result indicates that surface stress strongly influence the mu-
tual interaction between the molecules when their spacing is not larger than several times of the intrinsic
length.
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